Stiffness control¶
NAOqi Motion - Overview | API
What it does¶
- If the joint stiffness is set to 0.0, the joint controller does nothing and the joint is free.
- Else with a value at 1.0 the joint is allowed to use full torque power to reach a given position.
- Between these two extremes, the joint is more or less compliant (tries to reach a position but if torque need to move is higher than the limitation of Stiffness, the joint doesn’t reach the target position).
- globally, on the whole robot using:
ALMotionProxy::wakeUp
andALMotionProxy::rest
- specifically, for one or several joint(s) using:
ALMotionProxy::stiffnessInterpolation
,ALMotionProxy::getStiffnesses
orALMotionProxy::setStiffnesses
robotIsWakeUp()
event is raised when the awake status of the robot changes.How it works¶
These API just create a higher level of the DCM hardness definition and provide interpolation in order to have more smooth behavior.
Performances and limitations¶
Pepper only¶
Manual Stiffness control is forbidden for Pepper‘s lower part.
With the following methods:
You could only use:
- “Head”, “LArm” and “RArm”
- “LHand” and “RHand”
Workaround:
use ALMotionProxy::wakeUp
and ALMotionProxy::rest
methods.
Use Cases¶
Case 1: Stiffness On¶
When the robot is switched on, he initially has zero Stiffness. When at zero Stiffness, you can send any commands to the motors, but he will not move.
To give power to the motors, you can call one of Motion’s Stiffness methods:
#! /usr/bin/env python
# -*- encoding: UTF-8 -*-
"""Example: Stiffness On - Active Stiffness of All Joints and Actuators"""
import qi
import argparse
import sys
import time
def main(session):
"""
Stiffness On - Active Stiffness of All Joints and Actuators.
This example is only compatible with NAO.
"""
# Get the services ALMotion & ALRobotPosture.
motion_service = session.service("ALMotion")
# We use the "Body" name to signify the collection of all joints
names = "Body"
stiffnessLists = 1.0
timeLists = 1.0
motion_service.stiffnessInterpolation(names, stiffnessLists, timeLists)
# print motion state
print motion_service.getSummary()
time.sleep(2.0)
# Go to rest position
motion_service.rest()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ip", type=str, default="127.0.0.1",
help="Robot IP address. On robot or Local Naoqi: use '127.0.0.1'.")
parser.add_argument("--port", type=int, default=9559,
help="Naoqi port number")
args = parser.parse_args()
session = qi.Session()
try:
session.connect("tcp://" + args.ip + ":" + str(args.port))
except RuntimeError:
print ("Can't connect to Naoqi at ip \"" + args.ip + "\" on port " + str(args.port) +".\n"
"Please check your script arguments. Run with -h option for help.")
sys.exit(1)
main(session)
Avoiding judder¶
When changing Stiffness away from zero, it is best to do it gently so as to reduce the chance of a judder when powering up the motors.
Adapting the Stiffness to task¶
Many tasks can be achieved at less than maximum Stiffness (Stiffness = 0.6), but tasks such as “Get up” require all the power they can get (Stiffness = 1.0).
Case 2: Stiffness Off¶
When you reduce the Stiffness to zero, you cut all the power to the motors, so you should be careful that the robot is in a self-stable pose, otherwise he could fall.
#! /usr/bin/env python
# -*- encoding: UTF-8 -*-
"""Example : Stiffness Off - remove stiffness of all joints and actuators"""
import qi
import argparse
import sys
def main(session):
"""
Stiffness Off - remove stiffness of all joints and actuators.
This example is only compatible with NAO.
"""
# Get the service ALMotion.
motion_service = session.service("ALMotion")
# We use the "Body" name to signify the collection of all joints
names = "Body"
stiffnessLists = 0.0
timeLists = 1.0
motion_service.stiffnessInterpolation(names, stiffnessLists, timeLists)
# print motion state
print motion_service.getSummary()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ip", type=str, default="127.0.0.1",
help="Robot IP address. On robot or Local Naoqi: use '127.0.0.1'.")
parser.add_argument("--port", type=int, default=9559,
help="Naoqi port number")
args = parser.parse_args()
session = qi.Session()
try:
session.connect("tcp://" + args.ip + ":" + str(args.port))
except RuntimeError:
print ("Can't connect to Naoqi at ip \"" + args.ip + "\" on port " + str(args.port) +".\n"
"Please check your script arguments. Run with -h option for help.")
sys.exit(1)
main(session)
Case 3: Stiffness Trajectories¶
Should you wish to vary the Stiffness of a joint over time, you can request a ‘trajectory’ of Stiffness.
# Example showing a stiffness trajectory
# Here the stiffness of the HeadYaw Joint, rises to
# 0.8, then goes back to zero.
pNames = "HeadYaw"
pStiffnessLists = [0.0, 0.8, 0.0]
pTimeLists = [0.5, 1.0, 1.5]
proxy.stiffnessInterpolation(pNames, pStiffnessLists, pTimeLists)
Like angle interpolation commands, multiple trajectories can be specified in the same command.
# Example showing multiple stiffness trajectories
# Here the stiffness of the HeadYaw Joint, rises to
# 0.5, then goes back to zero, while the HeadPitch
# joint rises to 1.0
pNames = ["HeadYaw", "HeadPitch"]
pStiffnessLists = [[0.0, 0.5, 0.0], [0.0, 1.0, 0.0]]
pTimeLists = [[0.5, 1.0, 1.5], [0.5, 1.0, 1.5]]
proxy.stiffnessInterpolation(pNames, pStiffnessLists, pTimeLists)