# -*- encoding: UTF-8 -*- '''Motion: Hula Hoop''' ''' This example is only compatible with NAO ''' import argparse import motion import almath from naoqi import ALProxy def main(robotIP, PORT=9559): ''' Example showing a Hula Hoop Motion with the NAO cartesian control of torso ''' motionProxy = ALProxy("ALMotion", robotIP, PORT) postureProxy = ALProxy("ALRobotPosture", robotIP, PORT) # end initialize proxy, begin go to Stand Init # Wake up robot motionProxy.wakeUp() # Send robot to Stand Init postureProxy.goToPosture("StandInit", 0.5) # end go to Stand Init, begin define control point effector = "Torso" frame = motion.FRAME_ROBOT axisMask = almath.AXIS_MASK_ALL isAbsolute = True useSensorValues = False currentTf = almath.Transform(motionProxy.getTransform(effector, frame, useSensorValues)) # end define control point, begin define target # Define the changes relative to the current position dx = 0.03 # translation axis X (meter) dy = 0.03 # translation axis Y (meter) dwx = 8.0*almath.TO_RAD # rotation axis X (rad) dwy = 8.0*almath.TO_RAD # rotation axis Y (rad) # point 01 : forward / bend backward target1Tf = almath.Transform(currentTf.r1_c4, currentTf.r2_c4, currentTf.r3_c4) target1Tf *= almath.Transform(dx, 0.0, 0.0) target1Tf *= almath.Transform().fromRotY(-dwy) # point 02 : right / bend left target2Tf = almath.Transform(currentTf.r1_c4, currentTf.r2_c4, currentTf.r3_c4) target2Tf *= almath.Transform(0.0, -dy, 0.0) target2Tf *= almath.Transform().fromRotX(-dwx) # point 03 : backward / bend forward target3Tf = almath.Transform(currentTf.r1_c4, currentTf.r2_c4, currentTf.r3_c4) target3Tf *= almath.Transform(-dx, 0.0, 0.0) target3Tf *= almath.Transform().fromRotY(dwy) # point 04 : left / bend right target4Tf = almath.Transform(currentTf.r1_c4, currentTf.r2_c4, currentTf.r3_c4) target4Tf *= almath.Transform(0.0, dy, 0.0) target4Tf *= almath.Transform().fromRotX(dwx) path = [] path.append(list(target1Tf.toVector())) path.append(list(target2Tf.toVector())) path.append(list(target3Tf.toVector())) path.append(list(target4Tf.toVector())) path.append(list(target1Tf.toVector())) path.append(list(target2Tf.toVector())) path.append(list(target3Tf.toVector())) path.append(list(target4Tf.toVector())) path.append(list(target1Tf.toVector())) path.append(list(currentTf.toVector())) timeOneMove = 0.5 #seconds times = [] for i in range(len(path)): times.append((i+1)*timeOneMove) # end define target, begin call motion api # call the cartesian control API motionProxy.transformInterpolations(effector, frame, path, axisMask, times) # Go to rest position motionProxy.rest() # end script if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--ip", type=str, default="127.0.0.1", help="Robot ip address") parser.add_argument("--port", type=int, default=9559, help="Robot port number") args = parser.parse_args() main(args.ip, args.port)